Принцип суперпозиции электрических полей. Принцип суперпозиции электрических Сформулируйте принцип суперпозиции электрических полей

Основная задача электростатики формулируется следующим образом: по заданному распределению в пространстве источников поля - электрических зарядов - найти значение вектора напряжённости во всех точках поля. Эта задача может быть решена на основе принципа суперпозиции электрических полей.

Напряжённость электрического поля системы зарядов равна геометрической сумме напряжённостей полей каждого из зарядов в отдельности.

Заряды могут быть распределены в пространстве либо дискретно, либо непрерывно. В первом случае напряжённость поля для системы точечных зарядов

где - напряжённость поля i -го заряда системы в рассматриваемой точке пространства, n - общее число дискретных зарядов системы.

Если электрические заряды непрерывно распределены вдоль линии, то вводится линейная плотность зарядов t , Кл/м.

t = (dq/dl),

где dq - заряд малого участка длиной dl .

Если электрические заряды непрерывно распределены по поверхности, то вводится поверхностная плотность зарядов s , Кл/м 2 .

s = (dq/dS ),

где dq - заряд, расположенный на малом участке поверхности площадью dS .

При непрерывном распределении зарядов в каком-либо объёме вводится объёмная плотность зарядов r , Кл/м 3 .

r = (dq/dV),

где dq - заряд, находящийся в малом элементе объёма dV .

Согласно принципу суперпозиции напряжённость электростатического поля, создаваемого в вакууме непрерывно распределёнными зарядами:

где - напряжённость электростатического поля, создаваемого в вакууме малым зарядом dq , а интегрирование проводится по всем непрерывно распределённым зарядам.

Рассмотрим применение принципа суперпозиции к электрическому диполю.

Электрическим диполем называется система из двух равных по абсолютной величине и противоположных по знаку электрических зарядов (q и –q ), расстояние l между которыми мало по сравнению с расстоянием до рассматриваемых точек поля. Вектор , направленный по оси диполя от отрицательного заряда к положительному, называется плечом диполя. Вектор называется электрическим моментом диполя (дипольным электрическим моментом). Напряжённость поля диполя в произвольной точке , где и - напряжённости полей зарядов q и -q (рис. 1.2).

В точке А, расположенной на оси диполя на расстоянии r от его центра (r>>l ), напряжённость поля диполя в вакууме:

В точке В, расположенной на перпендикуляре, восстановленном к оси диполя из его середины, на расстоянии r от центра (r>>l ):

В произвольной точке С модуль вектора напряженности

где r - величина радиуса-вектора, проведенного от центра диполя к точке С; a - угол между радиусом-вектором и дипольным моментом(рис. 1.2).



1.3. Поток напряжённости. Теорема Гаусса для электростатического поля в вакууме

Элементарным потоком напряжённости электрического поля сквозь малый участок площадью dS поверхности, проведённой в поле, называется скалярная физическая величина

dN = = EdScos() = E n dS = EdS ^ ,

где - вектор напряжённости электрического поля на площадке dS , - единичный вектор, нормальный к площадке dS , -вектор площадки, Е n = Ecos() - проекция вектора на направление вектора , dS ^ = dScos() - площадь проекции элемента dS поверхности на плоскость, перпендикулярную вектору (рис. 1.3).

Теорема Гаусса

Поток напряжённости электростатического поля в вакууме сквозь произвольную замкнутую поверхность пропорционален алгебраической сумме электрических зарядов, охватываемых этой поверхностью:

где все векторы направлены вдоль внешнихнормалей к замкнутой поверхности интегрирования S , которую часто называют гауссовой поверхностью.

1.4. Потенциал электростатического поля. Работа, совершаемая силами электростатического поля при перемещении в нём электрического заряда

Работа , совершаемая кулоновскими силами при малом перемещении точечного заряда q в электростатическом поле:

где - напряжённость поля в месте нахождения заряда q . Работа кулоновской силы при перемещении заряда q из точки 1 в точку 2 не зависит от формы траектории движения заряда (т.е. кулоновские силы являются консервативными силами). Работа сил электростатического поля при перемещении заряда q вдоль любого замкнутого контура L равна нулю. Это можно записать в виде теоремы о циркуляции вектора напряженности электростатического поля.

Циркуляция вектора напряженности электростатического поля равна нулю:

Это соотношение, выражающее потенциальный характер электростатического поля, справедливо как в вакууме, так и в веществе.

Работа , совершаемая силами электростатического поля при малом перемещении точечного заряда q в электростатическом поле, равна убыли потенциальной энергии этого заряда в поле:

dА= - dW П и А 12 = - DW П = W П1 - W П2 ,

где W П1 и W П2 - значения потенциальной энергии заряда q в точках 1 и 2 поля. Энергетической характеристикой электростатического поля служит его потенциал.

Потенциалом электростатического поля называется скалярная физическая величина j , равная потенциальной энергии W П положительного единичного точечного заряда, помещённого в рассматриваемую точку поля, В.

Потенциал поля точечного заряда q в вакууме

Принцип суперпозиции для потенциала

т.е. при наложении электростатических полей их потенциалы складываются алгебраически.

Потенциал поля электрического диполя в точке С (рис. 1.2)

Если заряды распределены в пространстве непрерывно, то потенциал j их поля в вакууме:

Интегрирование проводится по всем зарядам, образующим рассматриваемую систему.

Работа А 12 , совершаемая силами электростатического поля при перемещении точечного заряда q из точки 1 поля (потенциал j 1 ) в точку 2 (потенциал j 2 ):

А 12 = q (j 1 - j 2).

Если j 2 = 0, то .

Потенциал какой-либо точки электростатического поля численно равен работе, совершаемой силами поля при перемещении положительного единичного заряда из данной точки в точку поля, где потенциал принят равным нулю.

При изучении электростатических полей в каких-либо точках важны разности, а не абсолютные значения потенциалов в этих точках. Поэтому выбор точки с нулевым потенциалом определяется только удобством решения данной задачи. Связь между потенциалом и напряжённостью имеет вид

Е х = , Е у = , Е z = и ,

т.е. напряжённость электростатического поля равна по модулю и противоположна по направлению градиенту потенциала.

Геометрическое место точек электростатического поля, в которых значения потенциалов одинаковы, называется эквипотенциальной поверхностью. Если вектор направлен по касательной к эквипотенциальной поверхности, то и . Это означает, что вектор напряженности перпендикулярен эквипотенциальной поверхности в каждой точке, т.е. E = E n .

1.5. Примеры применения теоремы Гаусса к расчёту электростатических полей s >0) или к ней (если s < 0).

Для всех точек поля

Так как , и полагая потенциал поля равным нулю в точках заряженной плоскости (х = 0), получим

Графики зависимостей Е и j от x приведены на рис. 1.6.

Полей. Поле диполя

Рассмотрим метод определения модуля и направления вектора напряженности Е в каждой точке электростатического поля, создаваемого системой неподвижных зарядов Q 1 , Q 2 ,…, Q n .

Опыт показывает, что к кулоновским силам применим рассмотренный в механике принцип независимости действия сил (см. § 6), т. е. результирующая сила F, действующая со стороны поля на пробный заряд Q 0 равна векторной сумме сил F i , приложенных к нему со стороны каждого из зарядов Q;.

Согласно (79.1), F = Q 0 E и F 1 = Q 0 E 1 , где Е - напряженность результирующего поля, а Е 1 - напряженность поля, создаваемого зарядом Q 1 . Подставляя последние выражения в (80.1), получаем

(80.2)

Формула (80.2) выражает принцип суперпозиции (наложения) электростатических полей, согласно которому напряженность Е результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженностей полей, создаваемых в данной точке каждым из зарядов в отдельности.

Принцип суперпозиции применим для расчета электростатического поля электрического диполя. Электрический диполь - система двух равных по модулю разноименных точечных зарядов (+Q, - Q), расстояние l между которыми значительно меньше расстояния до рассматриваемых точек поля. Вектор, направленный по оси диполя (прямой, проходящей через оба заряда) от отрицательного заряда к положи тельному и равный расстоянию между ними, называется плечом диполя l. Вектор

(80.3)

совпадающий по направлению с плечом диполя и равный произведению заряда |Q|на плечо 1, называется электрическим моментом диполя или дипольным моментом (рис. 122).

где Е + и Е_ - напряженности полей, создаваемых соответственно положительным и отрицательным зарядами. Воспользовавшись этой формулой, рассчитаем напряженность поля в произвольной точке на продолжении оси диполя и на перпендикуляре к середине его оси.

Как видно из рисунка, напряженность поля диполя в точке А направлена по оси диполя и по модулю равна

Обозначив расстояние от точки А до середины оси диполя через г, на основании формулы (79.2) для вакуума можно записать

Согласно определению диполя, l /2 ≪ г, поэтому

2. Напряженность поля на перпендикуляре, восставленном к осям из его середины, в точке В (рис. 123). Точка В равноудалена от зарядов, поэтому

где г" - расстояние от точки В до середины плеча диполя. Из подобия равнобедренных треугольников, опирающихся на плечо диполя и вектор Е в, получим

(80.5)

Подставив в выражение (80.S) значение (80.4), получим

Вектор E g имеет направление, противоположное вектору электрического момента диполя (вектор р направлен от отрицательного заряда к положительному).

Теорема Гаусса для электростатического

Поля в вакууме

Вычисление напряженности поля системы электрических зарядов с помощью принципа суперпозиции электростатических полей можно значительно упростить, используя выведенную немецким ученым К. Гауссом (1777-1855) теорему, определяющую поток вектора напряженности электрического поля сквозь произвольную замкнутую поверхность.

В соответствии с формулой (79.3) поток вектора напряженности сквозь сферическую поверхность радиуса r, охватывающую точечный заряд Q, находящийся в ее центре (рис. 124), равен


Этот результат справедлив для замкнутой поверхности любой формы. Действительно, если окружить сферу (рис. 124) произвольной замкнутой поверхностью, то каждая линия напряженности, пронизывающая сферу, пройдет и сквозь эту поверхность.

Если замкнутая поверхность произвольной формы охватывает заряд (рис. 125), то при пересечении любой выбранной линии напряженности с поверхностью она то входит в нее, то выходит из нее.

Нечетное число пересечений при вычислении потока в конечном счете сводится к одному пересечению, так как поток считается положительным, если линии напряженности выходят из поверхности, и отрицательным для линий, входящих в поверхность. Бели замкнутая поверхность не охватывает заряда, то поток сквозь нее равен нулю, так как число линий напряженности, входящих в поверхность, равно числу линий напряженности, выходящих из нее.

Таким образом, для поверхности любой формы, если она замкнута и заключает в себя точечный заряд Q, поток вектора Е будет равен Q/e 0 , т. е.

(81.1)

Знак потока совпадает со знаком заряда Q.

Рассмотрим общий случай произвольной поверхности, окружающей n зарядов. В соответствии с принципом суперпозиции (80.2) напряженность Е поля, создаваемого всеми зарядами, равна сумме напряженностей Е, полей, создаваемых каждым зарядом в отдельности: . Поэтому

Согласно (81.1), каждый из интегралов, стоящий под знаком суммы, равен Q i /e 0 . Следовательно,

(81.2)

Формула (81.2) выражает теорему Гаусса для электростатического поля в вакууме: поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на e 0 . Эта теорема выведена математически для векторного поля любой природы русским математиком М. В. Остроградским (1801-1862), а затем независимо от него применительно к электростатическому полю - К. Гауссом.

В общем случае электрические заряды могут быть «размазаны» с некоторой объемной плотностью p = dQ/dV, различной в разных местах пространства. Тогда суммарный заряд, заключенный внутри замкнутой поверхности S, охватывающей некоторый объем V,

(81.3)

Используя формулу (81.3), теорему Гаусса (81.2) можно записать так:

Напряженность электрического поля, создаваемого системой зарядов в данной точке пространства, равна векторной сумме напряженностей электрических полей, создаваемых в той же точке зарядами в отдельности:

→ n → → →

Е = Σ Еi = Е 1 + Е 2 + …

Потенциал поля системы зарядов равен алгебраической сумме потенциалов в каждой точке по отдельности:

φ = Σ φi = φ 1 + φ 2 + …

Эти свойства электрического поля означает, что поле подчиняется принципу суперпозиции.

Теорема Гаусса и её применение для расчёта напряжённости электрического поля бесконечной равномерно заряженной плоскости, двух и более плоскостей; бесконечной равномерно заряженной нити, цилиндра; равномерно заряженной сферы, объёмно заряженного шара.

Теорема Гаусса : Поток вектора напряженности электростатического поля через произвольную замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, поделенной на электрическую постоянную ε 0 .

Ф = ∫ Еп ds = 1/ ε 0 Σ qi

1.Поле равномерно заряженной бесконечной плоскости . Бесконечная плоскость (рис. 1) заряжена с постоянной поверхностной плотностью +σ (σ = dQ/dS - заряд, который приходится на единицу поверхности). Линии напряженности перпендикулярны данной плоскости и направлены от нее в каждую из сторон. Возьмем в качестве замкнутой поверхности цилиндр, основания которого параллельны заряженной плоскости, а ось перпендикулярна ей. Так как образующие цилиндра параллельны линиям напряженности поля (соsα=0), то поток вектора напряженности сквозь боковую поверхность цилиндра равен нулю, а полный поток сквозь цилиндр равен сумме потоков сквозь его основания (площади оснований равны и для основания Е n совпадает с Е), т. е. равен 2ES. Заряд, который заключен внутри построенной цилиндрической поверхности, равен σ∙S. Согласно теореме Гаусса, 2E∙S= σ ∙S/ε 0 , откуда

2.Поле двух бесконечных параллельных разноименно заряженных плоскостей (рис. 2). Пусть плоскости заряжены равномерно разными по знаку зарядами с поверхностными плотностями +σ и –σ. Поле таких плоскостей будем искать как суперпозицию полей, которые создаются каждой из плоскостей в отдельности. На рисунке верхние стрелки соответствуют полю от положительно заряженной плоскости, нижние - от отрицательно заряженной плоскости. Слева и справа от плоскостей поля вычитаются (поскольку линии напряженности направлены навстречу друг другу), значит здесь напряженность поля E=0. В области между плоскостями E = E+ + E- (E+ и E- находятся по формуле (1)), поэтому результирующая напряженность

3.Поле равномерно заряженного бесконечного цилиндра (нити) . Бесконечный цилиндр радиуса R (рис. 6) равномерно заряжен с линейной плотностью τ (τ = –dQ/dt заряд, который приходится на единицу длины). Из соображений симметрии мы видим, что линии напряженности будут направлены по радиусам круговых сечений цилиндра с одинаковой густотой во все стороны относительно оси цилиндра. Мысленно построим в качестве замкнутой поверхности коаксиальный цилиндр радиуса r и высотой l . Поток вектора Е сквозь торцы коаксиального цилиндра равен нулю (торцы и линии напряженности параллельны), а сквозь боковую поверхность равен 2πrl Е. Используя теорему Гаусса, при r>R 2πrl Е = τl /ε 0 , откуда

Если r

4.Поле равномерно заряженной сферической поверхности . Сферическая поверхность радиуса R с общим зарядом Q заряжена равномерно с поверхностной плотностью +σ. Т.к. заряд распределен равномерно по поверхности то поле, которое создается им, обладает сферической симметрией. Значит линии напряженности направлены радиально (рис. 3). Проведем мысленно сферу радиуса r, которая имеет общий центр с заряженной сферой. Если r>R,ro внутрь поверхности попадает весь заряд Q, который создает рассматриваемое поле, и, по теореме Гаусса, 4πr 2 E = Q/ε 0 , откуда

При r>R поле убывает с расстоянием r по такому же закону, как у точечного заряда. График зависимости Е от r приведен на рис. 4. Если r"

5.Поле объемно заряженного шара . Шар радиуса R с общим зарядом Q заряжен равномерно с объемной плотностью ρ (ρ = dQ/dV – заряд, который приходится на единицу объема). Учитывая соображения симметрии, аналогичные п.3, можно доказать, что для напряженности поля вне шара получится тот же результат, что и в случае (3). Внутри же шара напряженность поля будет иная. Сфера радиуса r"

Значит, напряженность поля вне равномерно заряженного шара описывается формулой (3), а внутри его изменяется линейно с расстоянием r" согласно зависимости (4). График зависимости Е от r для рассмотренного случая показан на рис. 5.

>>Физика: Напряженность электрического поля. Принцип суперпозиции полей

Недостаточно утверждать, что электрическое поле существует. Надо ввести количественную характеристику поля. После этого электрические поля можно будет сравнивать друг с другом и продолжать изучать их свойства.
Электрическое поле обнаруживается по силам, действующим на заряд. Можно утверждать, что мы знаем о поле все, что нам нужно, если будем знать силу, действующую на любой заряд в любой точке поля.
Поэтому надо ввести такую характеристику поля, знание которой позволит определить эту силу.
Если поочередно помещать в одну и ту же точку поля небольшие заряженные тела и измерять силы, то обнаружится, что сила, действующая на заряд со стороны поля, прямо пропорциональна этому заряду. Действительно, пусть поле создается точечным зарядомq 1 . Согласно закону Кулона (14.2) на заряд q 2 действует сила, пропорциональная заряду q 2 . Поэтому отношение силы, действующей на помещаемый в данную точку поля заряд, к этому заряду для каждой точки поля не зависит от заряда и может рассматриваться как характеристика поля. Эту характеристику называютнапряженностью электрического поля. Подобно силе, напряженность поля – векторная величина ; ее обозначают буквой . Если помещенный в поле заряд обозначить через q вместо q 2 , то напряженность будет равна:

Напряженность поля в данной точке равна отношению силы, с которой поле действует на точечный заряд, помещенный в эту точку, к этому заряду.
Отсюда сила, действующая на заряд q со стороны электрического поля, равна:

Направление вектора совпадает с направлением силы, действующей на положительный заряд, и противоположно направлению силы, действующей на отрицательный заряд.
Напряженность поля точечного заряда. Найдем напряженность электрического поля, создаваемого точечным зарядом q 0 . По закону Кулона этот заряд будет действовать на положительный заряд q с силой, равной

Модуль напряженности поля точечного заряда q 0 на расстоянии r от него равен:

Вектор напряженности в любой точке электрического поля направлен вдоль прямой, соединяющей эту точку и заряд (рис.14.7 ) и совпадает с силой, действующей на точечный положительный заряд, помещенный в данную точку.

Принцип суперпозиции полей . Если на тело действует несколько сил, то согласно законам механики результирующая сила равна геометрической сумме этих сил:

На электрические заряды действуют силы со стороны электрического поля. Если при наложении полей от нескольких зарядов эти поля не оказывают никакого влияния друг на друга, то результирующая сила со стороны всех полей должна быть равна геометрической сумме сил со стороны каждого поля. Опыт показывает, что именно так и происходит на самом деле. Это означает, что напряженности полей складываются геометрически.
если в данной точке пространства различные заряженные частицы создают электрические поля, напряженности которых и т. д., то результирующая напряженность поля в этой точке равна сумме напряженностей этих полей:

причем напряженность поля, создаваемая отдельным зарядом, определяется так, как будто других зарядов, создающих поле, не существует.
Благодаря принципу суперпозиции для нахождения напряженности поля системы заряженных частиц в любой точке достаточно знать выражение (14.9) для напряженности поля точечного заряда. На рисунке 14.8 показано, как определяется напряженность поля в точке A , созданная двумя точечными зарядами q 1 и q 2 , q 1 >q 2

Введение электрического поля позволяет разделить задачу вычисления сил взаимодействия заряженных частиц на две части. Сначала вычисляют напряженность поля, созданного зарядами, а затем по известной напряженности определяют силы. Такое разделение задачи на части обычно облегчает расчеты сил.

???
1. Что называется напряженностью электрического поля?
2. Чему равна напряженность поля точечного заряда?
3. Как направлена напряженность поля зарядаq 0 , если q 0 >0 ? если q 0 <0 ?
4. Как формулируется принцип суперпозиции полей?

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,